Special metrics and triality
نویسندگان
چکیده
منابع مشابه
On Special Generalized Douglas-Weyl Metrics
In this paper, we study a special class of generalized Douglas-Weyl metrics whose Douglas curvature is constant along any Finslerian geodesic. We prove that for every Landsberg metric in this class of Finsler metrics, ? = 0 if and only if H = 0. Then we show that every Finsler metric of non-zero isotropic flag curvature in this class of metrics is a Riemannian if and only if ? = 0.
متن کاملSpecial Metrics
This is a survey on special metrics. We shall present some results and open questions on special metrics mainly appeared in the last 10 years.
متن کاملOn conformal transformation of special curvature of Kropina metrics
An important class of Finsler metric is named Kropina metrics which is defined by Riemannian metric α and 1-form β which have many applications in physic, magnetic field and dynamic systems. In this paper, conformal transformations of χ-curvature and H-curvature of Kropina metrics are studied and the conditions that preserve this quantities are investigated. Also it is shown that in the ...
متن کاملfinsler metrics with special landsberg curvature
in this paper, we study a class of finsler metrics which contains the class of p-reducible andgeneral relatively isotropic landsberg metrics, as special cases. we prove that on a compact finsler manifold,this class of metrics is nothing other than randers metrics. finally, we study this class of finsler metrics withscalar flag curvature and find a condition under which these metrics reduce to r...
متن کاملon matsumoto metrics of special ricci tensor
in this paper, the matsumoto metric with special ricci tensor has been investigated. it is proved that, if is ofpositive (negative) sectional curvature and f is of -parallel ricci curvature with constant killing 1-form ,then (m,f) is a riemannian einstein space. in fact, we generalize the riemannian result established by akbar-zadeh.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2008
ISSN: 0001-8708
DOI: 10.1016/j.aim.2008.07.017